Smurf2 regulates stability and the autophagic–lysosomal turnover of lamin A and its disease‐associated form progerin

نویسندگان

  • Aurora Paola Borroni
  • Andrea Emanuelli
  • Pooja Anil Shah
  • Nataša Ilić
  • Liat Apel‐Sarid
  • Biagio Paolini
  • Dhanoop Manikoth Ayyathan
  • Praveen Koganti
  • Gal Levy‐Cohen
  • Michael Blank
چکیده

A-lamins, encoded by the LMNA gene, are major structural components of the nuclear lamina coordinating essential cellular processes. Mutations in the LMNA gene and/or alterations in its expression levels have been linked to a distinct subset of human disorders, collectively known as laminopathies, and to cancer. Mechanisms regulating A-lamins are mostly obscure. Here, we identified E3 ubiquitin ligase Smurf2 as a physiological regulator of lamin A and its disease-associated mutant form progerin (LAΔ50), whose expression underlies the development of Hutchinson-Gilford progeria syndrome (HGPS), a devastating premature aging syndrome. We show that Smurf2 directly binds, ubiquitinates, and negatively regulates the expression of lamin A and progerin in Smurf2 dose- and E3 ligase-dependent manners. Overexpression of catalytically active Smurf2 promotes the autophagic-lysosomal breakdown of lamin A and progerin, whereas Smurf2 depletion increases lamin A levels. Remarkably, acute overexpression of Smurf2 in progeria fibroblasts was able to significantly reduce the nuclear deformability. Furthermore, we demonstrate that the reciprocal relationship between Smurf2 and A-lamins is preserved in different types of mouse and human normal and cancer tissues. These findings establish Smurf2 as an essential regulator of lamin A and progerin and lay a foundation for evaluating the efficiency of progerin clearance by Smurf2 in HGPS, and targeting of the Smurf2-lamin A axis in age-related diseases such as cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagic degradation of farnesylated prelamin A as a therapeutic approach to lamin-linked progeria

Farnesylated prelamin A is a processing intermediate produced in the lamin A maturation pathway. Accumulation of a truncated farnesylated prelamin A form, called progerin, is a hallmark of the severe premature ageing syndrome, Hutchinson-Gilford progeria. Progerin elicits toxic effects in cells, leading to chromatin damage and cellular senescence and ultimately causes skin and endothelial defec...

متن کامل

Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria

Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to mo...

متن کامل

Permanent farnesylation of lamin A mutants linked to progeria impairs its phosphorylation at serine 22 during interphase

Mutants of lamin A cause diseases including the Hutchinson-Gilford progeria syndrome (HGPS) characterized by premature aging. Lamin A undergoes a series of processing reactions, including farnesylation and proteolytic cleavage of the farnesylated C-terminal domain. The role of cleavage is unknown but mutations that affect this reaction lead to progeria. Here we show that interphase serine 22 ph...

متن کامل

Comparing lamin proteins post-translational relative stability using a 2A peptide-based system reveals elevated resistance of progerin to cellular degradation

Nuclear lamins are the major components of the nuclear lamina at the periphery of the nucleus, supporting the nuclear envelope and participating in many nuclear processes, including DNA replication, transcription and chromatin organization. A group of diseases, the laminopathies, is associated with mutations in lamin genes. One of the most striking cases is Hutchinson-Gilford progeria syndrome ...

متن کامل

Nuclear localization signal deletion mutants of lamin A and progerin reveal insights into lamin A processing and emerin targeting

Lamin A is a major component of the lamina, which creates a dynamic network underneath the nuclear envelope. Mutations in the lamin A gene (LMNA) cause severe genetic disorders, one of which is Hutchinson-Gilford progeria syndrome (HGPS), a disease triggered by a dominant mutant named progerin. Unlike the wild-type lamin A, whose farnesylated C-terminus is excised during post-translational proc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2018